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Abstract

A variational method of constructing an adaptive moving grid composed of hexahedral cells is considered. The method
is based on minimizing a functional defined on the Riemannian manifold in space of variables including the physical space
coordinates and components of a vector-valued monitor function. The mesh is generated in the manifold and then it is
projected down to the physical region to provide the adaptive grid. The integrand of the functional is the non-dimensional
ratio of the invariants of the metric. The functional depends on metric elements of two metrics. The curvilinear mesh, gen-
erated in the manifold, induces the monitor metric. Another control metric, defined in a special way, is responsible for
additional cell shape control. The issues of non-degeneracy conditions for a hexahedral mesh are considered. Examples
of adaptive grids are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Adaptive grids, being condensed in subdomains of high gradients of the monitor function, allow significant
improvement in the accuracy of physical modeling. One promising development is the use of moving grids,
since they can preserve a simple mesh structure which, in turn, simplifies the numerical procedure of solving
a physical problem. When employing a variational approach, the grid lines in 2-D and grid surfaces in 3-D are
smooth. Those methods allow the execution of additional control for the cell shape by applying specific func-
tionals. Description of some variational adaptive mesh methods and applications can be found, for instance,
in the monographs [1–6], surveys [7–11], papers [12–22], and others. Generally, in the adaptive mesh approach,
the equidistribution principle is employed for the error estimates of the solution or for geometrical parameters
of the monitor surface. In [13], the source terms in the Poisson equations are expressed in terms of weight func-
tions that measure the flow activity along grid lines. In [14], a special Riemannian metric is introduced via the
monitor function and further, in [21], this idea was implemented when constructing the harmonic mapping of
the parametric square onto the manifold. In [15], it was proposed that the functional of smoothness should be
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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defined on the monitor surface. This idea is employed in the methods considered in [17–20,22,23]. In [23], the
dimensional functional of smoothness, proposed in [15], was applied for constructing 3-D adaptive hexahedral
grids. In [6], the Euler–Lagrange equations for that functional were employed with the same purpose. In [16],
the 2-D mesh is adapted in the parametric domain. The level-set-based deformation method for generating
adaptive moving grids was developed in [24].

When adapting the mesh in realistic, complicated domains, grid non-degeneracy is one more requirement of
particular importance. A special class of the barrier variational methods, introduced in grid generation in [25],
automatically guarantee mesh non-degeneracy in the course of computation. It was suggested that the barrier
method could be applied to adaptive mesh construction in [3,17,23]. In [19], a special way of freezing the met-
ric was considered so as to preserve the barrier property of the discrete functional in problems with a discon-
tinuous monitor function. A second parametrization was proposed in [26] with the objective of employing a
control for the cell shape. This idea was applied to adaptive meshes in [27,31].

In this paper, we present the adaptive moving mesh method for grids composed of hexahedral (hex) cells.
The method is based on minimizing a functional defined on the Riemannian manifold in space of variables
including the physical space coordinates and components of a vector-valued monitor function. The mesh is
generated in the manifold and then projected down to the physical region to provide the adaptive grid.
The integrand of the functional is the non-dimensional ratio of the invariants of metric. The functional
depends on metric elements of two metrics. The curvilinear mesh, generated in the manifold, induces the mon-
itor metric. Another control metric, defined in a special spirit, is responsible for additional cell shape control.
For each hex cell, the functional is discretized on 10 tetrahedra forming two dodecahedra with the same ver-
tices that span the hex cell. The discrete functional possesses an infinite barrier on the boundary of the set of
non-folded dodecahedral cells that ensures the construction of a non-folded grid composed of such cells. In its
practical implementation, the corresponding hexahedral mesh is also non-folded.

The outline of the paper is as follows: in Section 2, the adaptive grid problem formulation is given and func-
tional is constructed in the general n-dimensional case. Section 3 presents the 3-D functional. Sections 4 and 5
discuss non-degeneracy conditions for a mesh and hex cell, respectively. Section 6 specifies the way of discret-
izing the functional and discusses the barrier property. The minimizing procedure for the discrete functional is
described in Section 7 and computational formulae are given in Section 8. The method of boundary nodes
redistribution is presented in Section 9. Two examples of grid construction are reported in Section 10. In Sec-
tion 11, the case of a discontinuous monitor function is analyzed.

2. Problem formulation and variational functional

Let a Riemannian manifold M be given in the space Rnþm of variables x = (x1, . . . ,xn, f1, . . . , fm)
= (x1, . . . ,xn+m). Here n is the dimension of Euclidian space Rn of the variables ~x ¼ ðx1; . . . ; xnÞ, m is the num-
ber of components of the vector-valued monitor function f = (f1, . . . , fm) being used for grid adaptation. Every
component of f depends on ~x, i.e., f p = f p(x1, . . . ,xn), p = 1, . . . ,m. For instance in a flow problem, as f p one
may employ the density, pressure, velocity components, etc.

Consider a homeomorphic smooth, C1, mapping xðXÞ : Rn ! Rnþm of the canonical domain C in space of
the variables X = (X1, . . . ,Xn) onto the manifold M with the Jacobian matrix ai

j ¼ oxi=oX j, i = 1, . . . ,n + m,
j = 1, . . . ,n. Consider also an analogous auxiliary mapping xðnÞ : Rn ! Rnþm of the parametric domain P in
space of the variables n = (n1, . . . ,nn) (as a rule it is the unit cube 0 6 n1, . . . ,nn

6 1) onto the manifold M with
the Jacobian matrix bi

j ¼ oxi=onj, i = 1, . . . ,n + m, j = 1, . . . ,n, and auxiliary mapping XðnÞ : Rn ! Rn of the
domain P onto C with the Jacobian matrix ci

j ¼ oX i=onj, i, j = 1, . . . ,n. The domains P; C and manifold M
are assumed to be simply connected and bounded. In order to derive the functional, the transformation
x(X) will be expressed via composition of two auxiliary mappings: inverse n(X) and direct x(n). If in the
domain C, we have a non-folded curvilinear mesh (for mesh non-degeneracy see Section 4), given by the node
coordinates Xl (l is the node number), then its image in M is also a non-folded mesh. The projection of the
latter down to the physical domain X in the space Rn of variables ~x is an adaptive grid. The mapping of the
nodal points x(Xl) is called a discrete mapping.

In Fig. 1, we present an example of the case n = 2, m = 1, i.e., with the scalar monitor function f. The
domain P, the unit parametric square in the plane n1,n2, is mapped onto the domain C in the plane X1,X2.



Fig. 1. Case n = 2, m = 1. Manifold M is a surface in R3 space x1,x2, f. P; C;X are the parametric, canonical, and physical domains,
respectively.
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P and C are mapped onto the manifold M, being a surface in R3 space of the variables x1,x2, f. The curvilinear
mesh, given in C, is transformed to the mesh in M by the mapping x(X) and the projection of the latter down
to the plane x1,x2 is the adaptive mesh in the 2-D physical domain X. The case n = 1, m = 2 is shown in Fig. 2.
The monitor function has two components f = (f1, f2). The unit segment P in the n-axis is mapped onto the
segment C in the X-axis, and each of them is mapped onto the manifold M, being a curve in R3 space of
the variables x, f1, f2. The projection of the mesh, constructed on the curve M by the mapping x(X), down
to the x-axis is the adaptive mesh in the 1-D domain X.

Adaptive mesh generation is employed by means of the homeomorphic smooth, C1, mapping
xðXÞ : Rn ! Rnþm of the domain C onto the manifold M, provided that the boundary correspondence is given.
The functions x(X), executing this mapping, are sought by minimizing a functional. The functional is the inte-
gral of a function depending on the invariants of the metric h = a>a (a> is the transposed Jacobian matrix)
induced by this mapping. The invariants of h can be expressed in terms of the invariants of the tensor
G�1g where the metrics g = b>b and G = c>c are induced by the mappings x(n) and X(n), respectively (see
[28]). In particularly, we employ the invariants I1 = tr(G�1g) and In = det(G�1g).

Consider the ratio of the invariant I1 to In raised to an appropriate power and normalised so as to obtain a
non-dimensional function
E ¼ 1

nn=2

In=2
1

I1=2
n

¼ 1

nn=2

ðtrðG�1gÞÞn=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffiffi
det g
p ð1Þ
and write the following functional for E being the integral over the n-dimensional unit cube
Fig. 2. Case n = 1, m = 2. Manifold M is a curve in R3 space x, f1, f2.
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DðxðnÞÞ ¼
Z 1

0

E dn1 � � � dnn ¼ 1

nn=2

Z 1

0

ðtrðG�1gÞÞn=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffiffi
det g
p dn1 � � � dnn: ð2Þ
D is the invariant to an orthogonal transformation and scaling of the coordinate systems x and X. For non-
adaptive grid construction, when all components f p = const. and the manifold M is a physical domain X, the
functional in the form (2) was suggested in [29].

In practical implementation, generally, it is convenient to use one more variational formulation of the
adaptive grid generation problem [28]. It is sought a homeomorphic smooth, C1, mapping
xðnÞ : Rn ! Rnþm of the parametric domain P onto the manifold M provided that the boundary correspon-
dence is given. The functions x(n), executing the mapping, are sought which minimize the functional (2). Gij(n)
are the elements of a symmetric positive definite matrix given at every point in P. In the 2-D case, analogous
formulations were employed, for instance, in [26,27,30–32].

3. Three-dimensional functional

In the case n = 3, the functional (2) reads
D ¼ 1

33=2

Z 1

0

Z 1

0

Z 1

0

ðtrðG�1gÞÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffiffi
det g
p dn1 dn2 dn3; ð3Þ
where
trðG�1gÞ ¼ Gijgji ¼ G11g11 þ G22g22 þ G33g33 þ 2G12g12 þ 2G13g13 þ 2G23g23;
Gij are the elements of the inverse matrix G�1 (contravariant tensor) and the summation convention is applied
over repeated indices. On the manifold M in R3þm at a point with coordinates r = (x1,x2,x3, f1, . . . , fm), the
elements of the metric tensor g are
gij ¼ ðrni � rnjÞ; i; j ¼ 1; 2; 3; ð4Þ
where rni ¼ ðx1
ni ; x2

ni ; x3
ni ; f 1

ni ; . . . ; f m
ni Þ. M is a monitor manifold, therefore, g may be called a monitor metric.

Since every component f p = f p(x1,x2,x3) and, therefore,
f p
ni ¼ f p

xj x
j
ni ; i; j ¼ 1; 2; 3; p ¼ 1; . . . ;m; ð5Þ
the metric elements are
gij ¼ akl
oxk

oni

oxl

onj ; ð6Þ
where
akl ¼ dkl þ
Xm

p¼1

of p

oxk

of p

oxl
; k; l ¼ 1; 2; 3; ð7Þ
and dkl is the Kronecker delta. The elements of the metric tensor G at a point in space X1,X2,X3 are defined
analogously to (4).

Let us derive the expression for the determinant of the metric tensor g. Substituting the coefficients (6) and
(7) in detg, after rather a cumbersome algebraic derivation (omitted for the sake of brevity) one obtains
det g ¼ 1þ
Xm

p¼1

ðf p
x1Þ2 þ ðf p

x2Þ2 þ ðf p
x3Þ2

 !
det ~g; ð8Þ
where ~g is the metric established by the transformation ~xðnÞ : R3 ! R3 of the parametric cube P onto the
physical domain X. The Jacobian (determinant of the Jacobian matrix) of this mapping is
ffiffiffiffiffiffiffiffiffiffiffi
det ~g

p
¼ ~r 1 � ð~r 2 � ~r 3Þ;
n n n
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where ~r ¼ ðx1; x2; x3Þ and the expression on the right-hand side is a triple scalar product.
Substituting (8) in (3) gives the final form of the functional to be used in calculations,
D ¼ 1

33=2

Z 1

0

Z 1

0

Z 1

0

ðtrðG�1gÞÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

ffiffiffiffiffiffiffiffiffiffiffi
det ~g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
Pm

p¼1ðf
p
x1Þ2 þ ðf p

x2Þ2 þ ðf p
x3Þ2

q dn1 dn2 dn3: ð9Þ
For a non-adaptive mesh construction, (9) turns to the functional employed for hexahedral mesh generation
in [28]. That functional is universal, because an arbitrary given homeomorphic smooth mapping ~xðnÞ may be
reproduced by minimizing the functional with a given metric G. In other words, an arbitrary given non-
folded mesh may be reproduced by using this functional. One may ask the question: What is the sense of
constructing a mapping if it is already given? To give an answer, we consider the following example. Let
a parametric domain P � R3 and a physical domain X � R3 consist of two subdomains P ¼ P1 [ P2 and
X = X1 [ X2, and the mapping ~x1ðnÞ : P1 ! X1 be given. It is required to find a mapping ~x2ðnÞ : P2 ! X2

so that it is a smooth extension of ~x1ðnÞ. If to implement a method with this aim (to use a functional, dif-
ferential equations, etc.), then these two different mappings ~x1ðnÞ and ~x2ðnÞ should be smoothly conjugated.
This is an additional and not easy problem. At the discrete level of mesh construction, it implies that the grid
is given in X1 and it is required to extend it smoothly into X2. In other words, the mesh consists of two
blocks and on their joint boundary the coordinate lines should be smoothly conjugated. In the present meth-
od, both the mappings ~x1ðnÞ and ~x2ðnÞ are defined within a common approach, i.e., using the same func-
tional. Hence, the mapping x1(n) may be smoothly extended to ~x2ðnÞ by varying gradually the metric
elements Gij in the vicinity of the boundary between X1 and X2. For instance, this feature allows the orthog-
onalization and condensation of the mesh near the body so as to resolve the boundary layers in viscous flow
problems [28], or to construct a mesh in unsteady problems when the boundary of the physical domain X
moves rapidly [31,32,35]. In Section 10, it is employed to improve mesh quality. G is called a control metric,
since it allows for additional control over the mesh coordinatesurfaces. The absolute minimum of D is equal
to 1, but it is rarely attained, except in simple domains or when a given mesh is reproduced with given ele-
ments Gij.

For the case n = 2 with ~x ¼ ðx; yÞ and n = (n,g), from (2) and formulae for the monitor metric g, analogous
to (4), (6), (7), when the control metric G is Euclidian, one obtains the functional proposed in [18],
D ¼ 1

2

Z 1

0

Z 1

0

a11ðx2
n þ x2

gÞ þ 2a12ðxnyn þ xgygÞ þ a22ðy2
n þ y2

gÞ

ðxnyg � xgynÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Pm
p¼1ðf

p
x Þ2 þ ðf p

y Þ2
q dn dg: ð10Þ
If a scalar monitor function is used, then (10) becomes a functional proposed in [15], and its minimizer
employs the mapping P !M of the parametric square 0 6 n, g 6 1 onto the monitor surface z = f(x,y) in
space x,y, f. This mapping is inverse of the harmonic mapping M! P. The harmonic mapping M! P exists
and is a diffeomorphism (cf. [36]). The functional (10) with a vector-valued or scalar monitor function was
employed for adaptive grid generation in [3,17–20,22,23] and others.

4. Non-degeneracy conditions for the mesh

Let us consider non-degeneracy conditions for a 3-D mesh produced by the mapping ~xðnÞ : P ! X, since,
when adapting, the grid is actually sought in X. We use the definition of the non-folded mesh, which is quite
close to the one given in [33].

Definition 1. A non-folded mesh is one which does not contain folded or self-intersecting cells, self-intersecting
coordinate lines and surfaces, or coincident cells or nodes, and in most cases the Jacobian of the mapping
J ¼ det ~x0ðnÞ > 0 everywhere in P.

Thus, the grid generation task (including adaptivity) is to find a homeomorphic mapping P ! X subject to
a specified homeomorphism oP ! oX and a non-folded mesh (e.g., cubic one) is given in P. The requirement
J > 0 is necessary to construct a non-degenerate curvilinear coordinate system in X. However, there is an
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exception when J = 0 on a subset of a lower dimension (e.g., isolated points, curves or surfaces in P). Homeo-
morphism of the mapping is retained and cells may be still called non-folded if they are admissible for physical
modeling. As an example we may point out the prismatic cell (cf. [28,33]) when J = 0 on the cell edge.

It is still an open question concerning conditions under which the mapping ~xðnÞ, specified by the minimizer
of (9), is a homeomorphism. It was suggested in [37], that sufficient conditions were for the mapping to be a
global homeomorphism with the use of only local information about the mapping and its properties on the
boundaries of both image and pre-image. They may be applied to provide non-degeneracy of a mesh. Note
that, in the present method, the mesh is generated by employing a continuous piecewise smooth transforma-
tion, i.e., composed of smooth mappings ~xiðnÞ of every grid element (cell) Pi in the domain P to a correspond-
ing element Xi in X.

Let P;X be bounded connected domains in Rn and P;X be their diffeomorphic closures. Let xðnÞ : P ! X
be a C1 mapping. The following statement is valid (Theorem 4 of [37]).

Theorem 1. Let x(n) map homeomorphically oP onto oX and the Jacobian of the mapping
J ¼ det x0ðnÞ > 0; n 2 P:
Then x(n) is a homeomorphism from P onto X.

Remark. It is worth noting that in [38], the analogous statement for the cases n = 2,3 was proved in Lemmas
10.3.5 and 10.4.2 under the additional condition that P ! X is a surjective transformation.

The homeomorphicity conditions of a continuous mapping have also been established (Theorem 6 of [37]).

Theorem 2. Let x(n) map homeomorphically oP onto oX and be a local homeomorphism from P onto X (homeo-

morphism in the vicinity of any point of P). Then x(n) is a homeomorphism from P onto X.

Let P be partitioned into nonintersecting subdomains Pi, i = 1, . . . ,m,
P ¼
[m
i¼1

Pi:
Let xðnÞ : P ! X be a continuous mapping, being a C1 mapping on closures Pi. Denote the restriction of x(n)
onto Pi by xi(n). Theorems 1 and 2 have, as a consequence, the following property (Theorem 9 of [37]).

Theorem 3. Let x(n) map homeomorphically oP onto oX, its restriction xi(n) map homeomorphically oPi onto

xiðoPiÞ for any i = 1, . . . ,m, and
J i ¼ det x0iðnÞ > 0; n 2 Pi; i ¼ 1; . . . ; m:
Then x(n) is a homeomorphism from P onto X.

Theorem 3 can be applied to obtain sufficient non-degeneracy conditions for a grid, for instance a hexahe-
dral mesh. Let P be the parametric domain and X be the physical domain in R3. Given the homeomorphism
oP ! oX, if for each grid element Pi (cube) in P its boundary oPi is mapped homeomorphically by ~xiðnÞ onto
the boundary oXi of the grid element Xi (hexahedron) in X, and for all elements det ~x0iðnÞ > 0, n 2 Pi, then by
Theorem 3 the global piecewise smooth mapping ~xðnÞ is a homeomorphism. Hence, we need conditions of
positivity for the Jacobian Ji of the mapping of the cube Pi onto the hexahedron Xi, since the homeomorphism
oPi ! oXi is assumed given. This issue is discussed in Section 5.
5. Non-degeneracy conditions for a cell

In this paper, we consider grids composed of hex cells. As noted in Section 4, non-degeneracy of a mesh
implies that its every cell is non-folded (given by a homeomorphic mapping). Consider a hex cell in space
x1,x2,x3, see Fig. 3a, which is specified via the trilinear transformation of the unit cube I3 = {(n1,n2,n3):
0 6 n1,n2,n3

6 1} from parametric space,
~r ¼ w þ w n1 þ w n2 þ w n3 þ w n1n2 þ w n1n3 þ w n2n3 þ w n1n2n3; ð11Þ
1 2 4 5 3 6 8 7



Fig. 3. Hex cell (a) and 2 dodecahedra (b), (c) with planar triangular faces. The first dodecahedron (b) is decomposed into 4 corner
tetrahedra, T1245,T3427,T6572,T8754, and internal T2457. The second one (c) is decomposed into 4 corner tetrahedra, T2316,T4138,T5861,T7683,
and internal T1386.
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where the vectors wi are
Fig. 4.
such p
w1 ¼ ~r1; w2 ¼ ~r2 � ~r1; w3 ¼ ~r3 � ~r2 � ~r4 þ ~r1; w4 ¼ ~r4 � ~r1; w5 ¼ ~r5 � ~r1;

w6 ¼ ~r6 � ~r2 � ~r5 þ ~r1; w7 ¼ ~r7 � ~r3 � ~r6 � ~r8 þ ~r2 þ ~r4 þ ~r5 � ~r1; w8 ¼ ~r8 � ~r4 � ~r2 þ ~r1;
and ~ri ¼ ðx1; x2; x3Þi are the coordinates of the cell vertex. In general, a hex cell has non-planar faces, being the
ruled surfaces of the second order.

Hence, for a hex cell to be non-folded, it is sufficient that the Jacobian of the mapping (11)
J ¼ ~rn1 � ð~rn2 � ~rn3Þ
is positive everywhere in the cell, subject to the given boundary correspondence. J is a polynomial of fourth
degree depending on three variables n1,n2,n3 (with a maximum of second degree of each) [34]. There is, as yet,
no known necessary and sufficient condition which can be used to say definitely whether a hex cell is inverted
or not [33,34].

In [28], instead of a hex cell it was proposed to consider 2 dodecahedra of the first and second type (see
Fig. 3b and c) spanned by the same vertices. Each dodecahedron is decomposed into the 5 tetrahedra: 4 corner
ones and 1 internal. The trilinear mapping (11) is replaced by the set of linear transformations ~rhðnÞ of the
basic tetrahedra in parametric space to corresponding tetrahedra composing 2 dodecahedra in space
x1,x2,x3. The unit cube in Fig. 4a is partitioned into the 5 basic tetrahedra by two ways likewise in
Fig. 3b,c. One of the 8 corner tetrahedra is shown in Fig. 4b, and one of the 2 internal tetrahedra is shown
in Fig. 4c. When constructing the mesh, we ensure non-degeneracy of the 10 tetrahedra composing the first
and second dodecahedra for every hex cell. Thus, the non-degeneracy condition for two grids composed of
dodecahedral cells of the first or second type may be written in the form of inequalities
½V m�n > 0; m ¼ 1; . . . ; 10; n ¼ 1; . . . ;N c; ð12Þ

where Vm is the algebraic volume of the mth tetrahedron in the nth cell, and Nc is the number of the hex cells.
This condition may be rewritten in terms of Jm for the linear transformation of the basic tetrahedron since
J m ¼ 6V m: ð13Þ
In parametric space, unit cube (a) is partitioned into 5 basic tetrahedra: 4 corner ones, like T1245 (b), and internal T2457 (c). Two
artitions are employed (see Fig. 3b and c).
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The sets of non-folded hex and dodecahedral cells do not coincide. The study of this issue was executed in [28].
For a non-folded hex cell, one or both corresponding dodecahedra may be inverted. Conversely, one may
locate the vertices of an individual cell so that both dodecahedra are non-folded and the hex cell is folded.
Nevertheless, practical implementation has shown that if the condition (12) is satisfied, then the hexahedral
grid is non-folded. For the final verification of hexahedral grid non-degeneracy, we apply, first, the sufficient
condition 2 for a hex cell to be non-folded of [34] and next, for the cells not satisfying it, the necessary con-
dition NC4 of [28] is checked. In the former, 27 inequalities combining the volumes of 32 tetrahedra are
checked. In the latter, one examines the sign of the Jacobian of (11) in the segments joining the points on
the opposite cell faces.
6. Discretization of functional

In Section 3, it is noted that in the 2-D case the harmonic mapping M! P exists and is a diffeomorphism.
The inverse mapping P !M is constructed by minimizing the functional (10). Numerical practice has shown
that, when seeking a discrete mapping using elliptic partial differential equations for the physical domain X of
complicated geometry (e.g., non-convex X with sharp inward corners on oX), the one-to-one nature of the
inverse mapping may be lost. As an example we refer to non-adaptive grid construction for the backward fac-
ing step domain (see, [23, pp. 8–36]). By Radó’s theorem (see e.g. [39]) the harmonic mapping of the simply
connected bounded domain X onto the analogous convex domain P (say, parametric square), subject to a
given homeomorphism oX! oP, is a diffeomorphism. However, the discrete implementation of the inverse
mapping P ! X by Winslow’s method [40] (using inverted Laplace’s equations) produces meshes composed
of quadrilateral cells with self-intersecting grid lines independently of whether a coarse or refined grid is con-
structed. In [25], a special way of discretizing the functional was proposed, known as a variational barrier
method. It allows the construction of non-folded meshes in arbitrary 2-D domains.

The 3-D case is much harder. For the harmonic mapping, extension of Radó’s theorem to the spatial case is
not valid (see [41,42]). On the other hand, practical computations have shown that the class of homeomorphic
piecewise smooth mappings is not empty, even when X involves complicated geometry. As shown in Section 4,
for the grid to be non-folded, each one of its cells should be non-folded. The barrier property of the discrete
functional plays a substantial role in obtaining a non-folded mesh.

Let a structured mesh of N1 · N2 · N3 nodes be generated in a domain X. For convenience, instead of the
unit cube in parametric space we consider the rectangular parallelepiped with edges N1 � 1,N2 � 1,N3 � 1. In
each of the Nc = (N1 � 1)(N2 � 1)(N3 � 1) cells, the functional (9) is discretized by averaging its approxima-
tion over the 10 basic tetrahedra. The resulting difference function (or discrete functional) is
Dh ¼ 1

Nc

XNc

n¼1

X10

m¼1

1

10
½Em�n; ð14Þ
where [Em]n is the integrand in (9) computed for the mth tetrahedron in the nth cell.
If the set of non-folded grids composed of dodecahedral cells is not empty the system of the algebraic equa-

tions written for the internal nodes,
Rxi ¼ oDh

oxi
n

¼ 0; i ¼ 1; 2; 3; ð15Þ
has at least one solution which corresponds to a non-folded mesh. Here n is a global node number. To find this
solution, we apply unconstrained minimization taking a non-folded grid as an initial guess. For the initial
folded grid, an untangling procedure is considered in [28]. In [28], we have proved the following theorem:

Theorem 4. The function Dh possesses an infinite barrier on the boundary of the set of non-folded grids composed

of dodecahedral cells of the first or second type.

The meaning of the barrier property is the following. Let, while grid nodes are moving, one of the 5 tetra-
hedra of the dodecahedral cell be close to degeneration, i.e., its volume Vm tends to zero while remaining posi-
tive. Recall that in (9) we have

ffiffiffiffiffiffiffiffiffiffiffi
det ~g
p

¼ J . By virtue of (13), there is a value tending to zero in the
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denominator of (14) in the corresponding term. Therefore, this term tends to infinity and Dh does as well. This
is an infinite barrier preventing cell folding while minimizing Dh. Hence, by Theorem 3 of Section 4, the two
grids composed of dodecahedral cells of the first or second type are also non-folded and that, in turn, ensures
non-degeneracy of the hexahedral mesh in practical computations.

For the first time in 3-D, the barrier property of the discrete functional was applied in [3,23], while the set of
linear transformations of the 24 basic tetrahedra is employed for each hex cell.

7. Minimization procedure

The procedure of unconstrained minimization is applied to find a minimum of Dh. Given a non-folded mesh
at the lth iteration step, the coordinates of the nth grid node at the l + 1th step are obtained by using the quasi-
Newton procedure in the sense that in the Hessian only the diagonal elements are retained
sRxi þ
X3

j¼1

Rxixjððxj
nÞ

lþ1 � ðxj
nÞ

lÞ ¼ 0; i ¼ 1; 2; 3; ð16Þ
where Rxixj ¼ o2Dh

oxi
n oxj

n
and s < 1 is the iterative parameter. The iterations are employed until the condition
max
n
j~rlþ1

n � ~rl
nj < e
is satisfied. Here e > 0 is sufficiently small. The experience of 2-D modeling on adaptive meshes has shown that
bringing of the iterative process (16) to convergence requires too many mesh iterations. Hence, at every time
step of an unsteady physical problem, one implements only a relatively small number of mesh iterations. This
is especially justified, since after every mesh iteration one has to update again the physical parameters of the
main problem at this time. Due to the infinite barrier, we can specify an iterative parameter s that the mesh will
remain non-folded in the course of computation.

To implement the minimization procedure (16), one should compute the first and second derivatives of Dh.
We will derive these formulae in the next section.
8. Computational formulae

Write the integrand of (9) in the form E = U/V, where
U ¼ cðGijgjiÞ
3=2
; V ¼

ffiffiffiffiffiffiffiffiffiffiffi
det ~g

p
¼ ~rn1 � ð~rn2 � ~rn3Þ;

c ¼ 3�3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

1þ
Xm

p¼1

ðf p
x1Þ2 þ ðf p

x2Þ2 þ ðf p
x3Þ2

 !�1=2

:

To obtain the derivatives, we utilize the chain rule
Exi ¼ Uxi � EV xi

V
; Exixj ¼ U xixj � 2Exi V xj � EV xixj

V
; i; j ¼ 1; 2; 3:
Differentiating the numerator U yields
Uxm ¼ 3

2
cðGijgjiÞ

1=2Gkl oglk

oxm
;

Uxmxn ¼ 3

2
cðGijgjiÞ

�1=2 1

2
Gij ogji

oxm
Gkl oglk

oxn
þ GijgjiG

kl o2glk

oxmoxn

� �
; i; j; k; l;m; n ¼ 1; 2; 3:

ð17Þ
When differentiating, the derivatives f p
xi are fixed, i.e., the metric is frozen. This issue is discussed in Section 11.

As noted in Section 6, the functional is discretized on the 10 tetrahedra. Consider the linear mapping rh(n)
which transforms the basic tetrahedron T1245 (see Fig. 4b) to the corresponding corner tetrahedron T1245 of a
dodecahedral cell in M. Meanwhile, the linear mapping ~rhðnÞ, transforming this basic tetrahedron to the cor-
ner tetrahedron T1245 of a dodecahedral cell in space x1,x2,x3 (see Fig. 3b), is
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~rh ¼ ð~r2 � ~r1Þn1 þ ð~r4 � ~r1Þn2 þ ð~r5 � ~r1Þn3 þ ~r1; 0 6 n1; n2; n3; n1 þ n2 þ n3
6 1:
Substituting the derivatives ~rh
ni in (6) gives the formulae for the metric elements gij
g11 ¼ aklðxk
2 � xk

1Þðxl
2 � xl

1Þ; g22 ¼ aklðxk
4 � xk

1Þðxl
4 � xl

1Þ; g33 ¼ aklðxk
5 � xk

1Þðxl
5 � xl

1Þ;
g12 ¼ aklðxk

2 � xk
1Þðxl

4 � xl
1Þ; g13 ¼ aklðxk

2 � xk
1Þðxl

5 � xl
1Þ; g23 ¼ aklðxk

2 � xk
1Þðxl

5 � xl
1Þ;
k, l = 1,2,3. The coefficients aij are defined by (7) and the nodal values of the finite difference approximations
to the derivatives ðf p

xk Þh are required. ðf p
xk Þh will be calculated below.

When computing the derivatives of U, in (17) we replace xk by xk
i , where i is the vertex number in T1245. For

instance, at the vertex 1, the derivatives of g11 with respect to xk
1 are
og11

oxk
1

¼ 2aklðxl
1 � xl

2Þ;
o

2g11

oðxk
1Þ

2
¼ 2akk; l ¼ 1; 2; 3:
Other derivatives and derivatives at the vertices i = 2,4,5 are obtained in a similar spirit. The derivatives of the
denominator V are given in [28, p. 731]. The integrand in (9) is invariant to rotation of the coordinate system
n, therefore, these formulae may be applied to the other 7 corner tetrahedra after a proper substitution of the
vertex number.

Next consider the linear mapping rh(n) which transforms the basic tetrahedron T2457 (see Fig. 4c) to the
corresponding internal tetrahedron T2457 of a dodecahedral cell in M. Meanwhile, the linear mapping
~rhðnÞ, transforming this basic tetrahedron to the internal tetrahedron T2457 of a dodecahedral cell in space
x1,x2,x3 (see Fig. 3c), is
~rh ¼ 1

2
ð~r7 þ ~r2 � ~r4 � ~r5Þn1 þ 1

2
ð~r7 þ ~r4 � ~r2 � ~r5Þn2 þ 1

2
ð~r7 þ ~r5 � ~r2 � ~r1Þn3 þ 1

2
ð~r2 þ ~r4 þ ~r5 � ~r7Þ;

0 6 n1; n2; n3; n1 þ n2 þ n3
6 1:
Substituting the derivatives ~rh
ni in (6) gives the formulae for the metric elements gij
g11 ¼
1

4
aklðxk

7 þ xk
2 � xk

5 � xk
4Þðxl

7 þ xl
2 � xl

5 � xl
4Þ; g22 ¼

1

4
aklðxk

7 þ xk
4 � xk

5 � xk
2Þðxl

7 þ xl
4 � xl

5 � xl
2Þ;

g33 ¼
1

4
aklðxk

7 þ xk
5 � xk

2 � xk
4Þðxl

7 þ xl
2 � xl

5 � xl
4Þ; g12 ¼

1

4
aklðxk

7 þ xk
2 � xk

5 � xk
4Þðxl

7 þ xl
4 � xl

5 � xl
2Þ;

g13 ¼
1

4
aklðxk

7 þ xk
2 � xk

5 � xk
4Þðxl

7 þ xl
2 � xl

5 � xl
4Þ; g23 ¼

1

4
aklðxk

7 þ xk
4 � xk

5 � xk
2Þðxl

7 þ xl
2 � xl

5 � xl
4Þ;
k, l = 1,2,3.
When computing the derivatives of U, in (17) we replace xk by xk

i . For instance, at the vertex 2, the deriv-
atives of g11 with respect to xk

2 are
og11

oxk
2

¼ 1

2
aklðxl

7 þ xl
2 � xl

5 � xl
4Þ;

o
2g11

oðxk
2Þ

2
¼ 1

2
akk; l ¼ 1; 2; 3:
Other derivatives and derivatives at the vertices i = 4,5,7 are obtained in a similar spirit. The derivatives of the
denominator V are given in [28, p. 733]. These formulae may be applied to the second internal tetrahedron
T1368 after a proper substitution of the vertex number.

It is necessary to determine the nodal derivatives f h
xi (for brevity, the superscript p is omitted implying that f

is a scalar function) at the nodes. To this end, we resolve the system (5) about these derivatives
fxi ¼ ~b�1
ij fnj ; i; j ¼ 1; 2; 3; ð18Þ
where ~b�1 is the inverse matrix for the Jacobian matrix oxi/onj of the mapping P ! X. In T1245, the discrete
derivative, denoted by ðf h

xiÞ1, is calculated via the system (18), using the approximations
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ðxi
n1Þh ¼ xi

2 � xi
1; ðxi

n2Þh ¼ xi
4 � xi

1; ðxi
n3Þh ¼ xi

5 � xi
1; i ¼ 1; 2; 3; f h

n1 ¼ f2 � f1; f h
n2 ¼ f4 � f1;

f h
n3 ¼ f5 � f1:
Next the nodal derivative f h
xi is interpolated through the values of ðf h

xiÞl in the 8 corner tetrahedra, adjacent to
the underlying node,
f h
xi ¼

X8

l¼1

ðf h
xiÞlV l

X8

l¼1

V l

 !�1

;

where Vl is the tetrahedron volume. Due to (13), instead of Vl one may use the Jacobian Jl of the linear trans-
formation, and it abridges computations because one uses Jl when solving the system (18).

If the monitor function is given in the cell center, one should update it at the grid nodes.
We apply an additional parameter, the adaptive coefficient ca, to control the number of grid nodes lying in

the layer of high gradients of the component f p. The greater ca is, the higher the relative number of grid nodes
in the layer of high gradients is. To this end, instead of f p one should substitute caf p. In addition, each f p is
scaled so that the difference of the maximal and minimal values of f p equals the diagonal of the rectangular
parallelepiped circumscribed about the physical domain X, i.e.,
f p
max � f p

min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

j¼1

ðxj
max � xj

minÞ
2

vuut ; p ¼ 1; . . . ;m:
Given the value of E and its derivatives at the vertices of the 10 tetrahedra, we form the elements of the system
for the procedure (16). Let the local vertex numbers 1,2, . . . , 8 in the cell correspond to the global grid node
numbers n1,n2, . . . ,n8. Then the value of E and its derivatives at the vertex 1 of T1245 are added to Dh and ele-
ments of the system (16)
Dh ¼ Dh þ E; ½Rxi �n1
¼ ½Rxi �n1

þ Exi ; ½Rxixj �n1
¼ ½Rxixj �n1

þ Exixj ; i; j ¼ 1; 2; 3:
We employ a notation drawn in programming languages. It implies, for instance, that a new value of Dh is
equal to Dh þ E. The values at the vertices 2,4,5 are added to Dh and corresponding elements
½Rxi �n2

; ½Rxixj �n2
, ½Rxi �n4

; ½Rxixj �n4
, ½Rxi �n5

; ½Rxixj �n5
. We treat E and its derivatives calculated at the vertices of the

9 remaining tetrahedra in a similar manner.
The method can be extended to unstructured grids in a straightforward manner. One needs only to define a

correspondence between a local vertex number in a cell and a global grid node number.
9. Boundary nodes redistribution

If when modeling a physical problem, the boundary of the physical domain X moves and its shape changes
substantially, it is necessary to redistribute the mesh nodes over the boundary oX. Motion of the nodes inside
X and on oX should be executed in a coordinated manner. When the monitor function suffers discontinuity
(e.g. shocks approaching oX), uncoordinated redistribution of the interior and boundary nodes (when, for
example, it is executed using 3-D and 2-D functionals, respectively) may result in instability in grid generation
and degenerate cells near oX.

In [28], an algorithm was suggested for redistributing the nodes on oX. In that approach, the problem of
constrained minimization of Dh was solved subject to constraints defining oX. The following discrete func-
tional is to be minimized
Dh
1 ¼

1

N c

XNc

n¼1

X10

m¼1

1

10
½Em�n þ

X
~rl2oX

klQð~rlÞ ¼ Dh þ
X
l2L

klQl;
here the constraints Ql ¼ Qð~rlÞ ¼ 0 define oX, kl are the Lagrange multipliers, and L is the set of the boundary
nodes. Since the function Qð~rÞ is assumed piecewise differentiable, the difference function Dh

1 holds the infinite
barrier on the boundary of the set of non-folded grids composed of dodecahedral cells.
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Now the system of algebraic equations, analogous to (15), will be supplemented with the constraints
Rxi ¼ oDh

oxi
n

þ kn
oQn

oxi
n

¼ 0; i ¼ 1; 2; 3; Qn ¼ 0;
here kn = 0 if n 62 L and constraints are defined for the boundary nodes n 2 L. The case when oX is defined
parametrically is considered in [28].

10. Examples of mesh

10.1. Horseshoe domain

In x,y,z-space, the domain is obtained by rotating a horseshoe about the z-axis. It is bounded from below
by the top half-sphere of radius r = 1 with the center at (0, 0,0) and plane z = 0, and from above by the surface
which is swept by the top semi-ellipse z > 0
x2=a2 þ z2=b2 ¼ 1; a ¼ 2; b ¼ 9;
rotated about the z-axis. In planar grid generation, this horseshoe domain was employed for the purpose of
truncation error study in [43]. We generate a ‘‘regular’’ (structured) grid of 61 · 61 · 51 nodes in the sense that
it is not obtained as the result of rotation of a 2-D mesh about the z-axis (in contrast to the cylindrical mesh).
A schematic view is depicted in Fig. 5, which shows the 4 bounding coordinate surfaces i = 1,61, j = 1,61,
lying in the plane z = 0, and the projection of the surface k = 1 (half-sphere) onto this plane. Hex cells, adjoin-
ing the 4 bounding edges i, j = 1; i = 1, j = 61; i = 61, j = 1; and i, j = 61 are the triangular prisms. In a pris-
matic cell, the functional is discretized on 8 tetrahedra (see [28, p. 728] for detail).

First, a non-adaptive mesh is constructed by the method proposed in [28] (see the surface i = 31 in Fig. 6).
The control metric G is specified so that the upper cells are not stretched. If G had been the Euclidian metric,
the upper cells would be rather stretched. In Fig. 10 of [28], one can find an example of stretched cells and the
way to specify G.

Two surfaces are given in space
z1ðxÞ ¼ 3� 5ðxþ 0:8Þðxþ 0:4Þðxþ 0:2Þ; z2ðyÞ ¼ 3� 5ðy þ 0:8Þðy þ 0:4Þðy þ 0:2Þ;

defining the form of the layers of high gradients of f. The components of the monitor function f p, p = 1,2, are
f p ¼
1 if z P zp þ dp;

0:5ðz� zp þ dpÞ=dp if jz� zpj < dp;

0 if z 6 zp � dp;

8><
>: ð19Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where dp ¼ 0:02 1þ ðzp=xpÞ2 and x1 = x, x2 = y. We define ca = 0.015.

The metric G is specified to be equal to the metric g of the mesh in Fig. 6. In non-adaptive mesh generation,
the metric G, defined in this way, results in the reproduction of the same grid, while the functional Dh attains
the absolute minimum value of 1 [28]. Hence, when adapting, the functional value increases. While generat-
ing the non-adaptive mesh, we move the nodes on the bounding surfaces and edges. While adapting, we addi-
tionally move the 8 corner points of the domain along the circles of radii r = 1, r = 2 in the plane z = 0. The
Fig. 5. Schematic view. Projection on the x,y-plane.
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Fig. 6. Surface i = 31 of the non-adaptive mesh.
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bottom view of the adapted mesh is presented in Fig. 7. The check of the hexahedral grid has shown that all
hex cells are non-folded.

10.2. Interblade domain of turbine channel

An 81 · 61 · 41 mesh is generated in the interblade domain of a turbine channel. Specifying the metric G

provides mesh impaction towards the blades. A surface in the form y(x), similar to that considered in Section
10.1, determines the form of the layer of high gradients. The scalar monitor function f is calculated by a for-
mula similar to (19). The adapted mesh is shown in Fig. 8 and the fragment of the bounding surface k = 41 in
Fig. 9. The check has shown that all hex cells are non-folded.

11. On singularity when adapting to discontinuous monitor function

For a model example, we consider a singularity appearing when adapting the mesh in hydrodynamical
problems with discontinuous solution. In the denominator of (9) there are derivatives of the monitor function
f (f is scalar). If f suffers a discontinuity across a certain surface, then, when grid nodes condense towards this
surface, one of the derivatives, determined numerically, tends to infinity. This, in turn, causes the infinite bar-
rier of Dh to disappear and mesh to fold. The mechanism for removing the barrier and the way to overcome
this drawback is discussed in this section.



ZXYFig. 7. Bottom view.B.N. Azarenok /
We analyze a discontinuous f when solving the nonlinear advection equation in one dimension, i.e., when
the solution depends on one variable x, while the mesh is constructed in x,y,z-space using the functional (9).
We solve the IVP given by the nonlinear advection equation with discontinuous initial data, i.e.
Adaptive grid (a)Journal of Computational
ou
ot
þ u

ou
ox
¼ 0; uðx; 0Þ ¼

ul if x < 0;

ur if x P 0:

�
ul > ur > 0: ð20Þ
The shock moves from the left to right with speed w = (ul + ur)/2. In [19], the following case was shown. Let
(1) this problem be solved by Godunov’s scheme on a 1-D moving mesh, (2) without adaptation, the grid
nodes move with the speed w, (3) initially at t = 0, the nodes be distributed uniformly and the midmesh node
be at point x = 0. In this situation the cell-average values of the discrete function ui+1/2 at the interval (xi,xi+1)
center do not change with time when calculated on the adaptive mesh.

It is sufficient to consider a grid of four cells: two cells to the left of the discontinuity with ui+1/2 = ul and
two cells to the right with ui+1/2 = ur. Due to symmetry of the problem, we discuss only the two left cells. These
cells are shown in Fig. 10 at the nth and n + 1th time levels. Points 1 and 3 move with the speed w and point 2
shifts closer to 3 when adapting. We will work in the frame moving with the speed w (see Fig. 11). In this
frame, when minimizing the functional, points 1 and 3 are fixed and node 2 moves. Given x1 = 0, one has
x3 = L, where L = 2h, h being the spacing of the initial uniform mesh. The coordinate x of point 2 is variable
and determined while solving the variational problem. The nodal values of the function ui are determined via
the linear interpolation of ui+1/2 and, therefore, u1 = u2 = ul, u3 = (ul+ur)/2. It is worth noting that points
1,2,3 are the nodes of a 3-D rectangular grid with uniform spacings in y, z and a certain number of nodes
in these two directions.

Next consider discretization of the functional (9) on this grid. As a monitor function we apply u multiplied
by the adaptive coefficient ca. The manifold M is defined by the coordinates x = (x,y,z,cau), and domain P by
and close-up (b).Physics 226 (2007) 1102–11211115
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Fig. 8. Adaptive mesh in the interblade domain.

Fig. 9. Fragment of the bounding surface k= 41.1116B.N. Azarenok / Journal of Computational Physics 226 (2007) 1102–1121



Fig. 11. In the moving frame, points 1,3 are fixed, coordinate x of point 2 is variable.

Fig. 10. Points 1,3 move with speed w, point 2 shifts towards 3 when adapting.

Fig. 12. Distributions of Dh (a) and oDh=ox (b). With ca > 0 Dh is not convex. With ca > ccrt
a the minimum and maximum disappear (see

curve ca = 0.2 in (b)).
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the coordinates n = (n,g,f). The control metric G is Euclidian. The mapping P ! X is defined by the functions
x = x(n), y = ag, z = bf (we assume that a = b = 1), and the metric elements are
g11 ¼ x2
nð1þ c2

au2
xÞ; g22 ¼ 1; g33 ¼ 1; g12 ¼ g13 ¼ g23 ¼ 0:
For convenience, we omit the coefficient 3�3/2, so the functional (9) takes the form
D ¼
Z 1

0

Z 1

0

Z 1

0

ðg11 þ g22 þ g33Þ
3=2ffiffiffiffiffiffiffiffiffiffiffi

det ~g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2
au2

x

p dn dg df ¼
Z 1

0

½x2
nð1þ c2

au2
xÞ þ 2�3=2

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

au2
x

p dn:
This 1-D functional is calculated by the rectangular rule on the two-cell grid
D ¼
X2

i¼1

½ðxnÞ2iþ1=2ð1þ c2
aðuxÞ2iþ1=2Þ þ 2�3=2

ðxnÞiþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

aðuxÞ2iþ1=2

q Dniþ1=2;
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here the coefficient 0.5 at Dh is omitted for convenience, and the spacing is Dni+1/2 = ni+1 � ni = 1. Using a
centered difference to approximate the derivatives
ðxnÞiþ1=2 ¼ ðxiþ1 � xiÞ=Dniþ1=2; ðuxÞiþ1=2 ¼ ðuiþ1 � uiÞ=ðxiþ1 � xiÞ;
we get, in the left and right cells,
ðxnÞ3=2 ¼ x; ðuxÞ3=2 ¼ 0; ðxnÞ5=2 ¼ L� x; caðuxÞ5=2 ¼ b=ðL� xÞ;
here b = ca|u3 � u2| = 0.5ca|ur � ul|. Then the discrete functional Dh is
Dh ¼ ðx
2 þ 2Þ3=2

x
þ
ðL� xÞ2 1þ b2

ðL�xÞ2

� �
þ 2

h i3=2

ðL� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

ðL�xÞ2

q ; ð21Þ
and its derivative is
oDh

ox
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2
p

ðx2 � 1Þ
x2

þ
2ðL� xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2 þ b2 þ 2

q
½ðL� xÞ2 þ b2�3=2

½1� ðL� xÞ2 � b2�: ð22Þ
In Fig. 12, the distributions of Dh and oDh=ox are presented for several values of ca with ul = 2, ur = 1, initial
unform spacing h = 0.1, and therefore, b = 0.5ca. Behaviour of Dh is analogous to that in the 1-D and 2-D
cases considered in [19]. With ca = 0, Dh has a minimum at x = 0.1 which corresponds to the uniform grid.
When ca > 0, Dh loses convexity. There are a minimum and maximum (see Fig. 12b). Therefore, the solution
of the problem of finding its extremum becomes non-unique. When increasing ca, on one hand the minimum
shifts to the right, corresponding to point 2 moving towards point 3, i.e., grid condensing. On the other hand,
the maximum shifts to the left from point 3 causing grid rarefaction. In 3-D problems this may cause harsh
node displacement due to jumps of the solution from the maximum to the minimum and vice versa during
iterations and, therefore, grid surfaces may overlap. Furthermore, with a certain critical value ccrt

a , both extre-
ma merge and further, when ca increases further, they disappear (see the curve ca = 0.2 in Fig. 12b). When
ca > ccrt

a there is no extremum and minimization of Dh causes the right cell to collapse.

Now, when differentiating Dh, the metric is frozen, in other words the derivative ux is assumed to not
depend on x. The derivative of the new functional, fixing b/(L � x) in (21), is found to be
oDh
1

ox
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2
p

ðx2 � 1Þ
x2

þ
2ðL� xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2 þ b2 þ 2

q
ðL� xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2 þ b2

q ð1� ðL� xÞ2 � b2Þ: ð23Þ
To obtain an explicit form of Dh
1 we integrate (23) and get
Dh
1 ¼
ðx2þ 2Þ3=2

x
þ
ð1� b2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ 2

q
b

ln 1þ b2þ b2ðb2þ 2Þ
ðL� xÞ2

þ bA

ðL� xÞ2

" #
þAþ b2 ln½1þ b2þðL� xÞ2þA�;

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2þ b2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2þ b2þ 2

q
: ð24Þ
Distributions of Dh
1 and oDh

1=ox are shown in Fig. 13. One can see that (1) with ca < 2 (b < 1) the functional Dh
1

is convex within the interval (0,L), (2) with ca! 2 the coordinate of the minimum of Dh
1 tends to L, in other

words the mesh may be strongly condensed, (3) Dh
1 has an infinite barrier preventing the right cell from col-

lapsing. Analogous properties are exhibited in the 1-D case for any ca (see [19]). With ca > 2, when point 2
approaches point 3 and, consequently, L � x! 0, the second term in (24) is dominant and has negative sign,
since 1 � b2 < 0. In Fig. 13, one can see that Dh

1 loses convexity when ca > 2. It seems to lead the right cell to
collapse when minimizing Dh

1. However, up to a certain ca it does not happen for the following reason. In the
model example, the iterative procedure (16) is a Newton method and the coordinate of point 2 at the l + 1th
step is determined by the formula



Fig. 13. Distributions of Dh
1 (a) and oDh

1=ox (b). With ca < 2 there is infinite barrier and it disappears with ca P 2.
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xlþ1 ¼ xl � s
oDh

1

ox
o

2Dh
1

ox2

� 	�1

: ð25Þ
The second derivative of Dh
1 is given by
o
2Dh

1

ox2
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 2
p xþ 1

x
þ 4

x3

� 	
þ ðL� xÞ½ððL� xÞ2 þ b2Þ2 þ ðL� xÞ2 þ b2� þ 4

0:5ðL� xÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2 þ b2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ2 þ b2 þ 2

q :
When L � xl! 0, retaining the terms of O((L � xl)�1) and O((L � xl)�2) in the first and second derivatives,
respectively, one obtains in (25)
xlþ1 � xl ¼ �s
ðb2 þ 2Þð1� b2Þ

b2 þ 4
ðL� xlÞ:
Since s < 1 and 1 � b2 < 0, it is obvious that the increment xl+1 � xl will be smaller than the distance to point 3
until the equality
�ðb2 þ 2Þð1� b2Þ=ðb2 þ 4Þ ¼ 1
is fulfilled. From this we obtain b . 1.565 or, for our example, ca . 3.13. Thus, the length of the right cell
remains greater than zero within the interval 1 6 b < 1.565 (2 6 ca < 3.13). With b > 1.565 the right cell col-
lapses. This is a distinction of the 2-D case where the iterations (25) hold xl < L for ca > 0 (see [19]).

Thus, there are three intervals of ca = 2b/|ur � ul| for a discontinuous monitor function. In the first
0 < b < 1, the functional Dh

1 has an infinite barrier keeping the mesh from folding. In the second
1 6 b < 1.565, it reveals the barrier property of the iterative procedure preserving the right cell from collaps-
ing. In the third interval b > 1.565, the adjacent nodes, located on both sides of the discontinuity surface, coin-
cide and the mesh folds. It is worth noting that the second interval is unusable for practical computations. This
model can be readily extended for any even number of cells N1 � 1 > 4 in x.

The model considered explains the node motion mechanism in 3-D problems of hydrodynamics with a dis-
continuous monitor function f. In the neighborhood of a point of the discontinuity surface we may consider a
local Cartesian system of coordinates with the x-axis directed along the normal to this surface. Then, to a first
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approximation, one may assume x = x(n), y = ag, z = bf and neglect the small terms with fy, fz. Behavior of
the adaptive mesh near the discontinuity surface depending on ca will be analogous to that of this model
example.

To avoid mesh folding, we introduce one more parameter which determines the minimal thickness of the
layer of high gradients of ~f ¼ caf and restricts a maximum gradient of ~f [18]. First on the constructed mesh,
we calculate the discrete nodal derivatives ~f h

x ;
~f h

y ;
~f h

z and specify a maximal value for the modulus of the gra-
dient in the monitor function F max ¼ v maxðjr~f jÞ, where v < 1 is a coefficient selected during computations.
When adapting, we update the gradient of ~f as follows
r~f � ¼ F maxr~f =jr~f j if jr~f j > F max;

r~f if jr~f j 6 F max:

(

Obtained values ~f �x ; ~f
�
y ;

~f �z are substituted in (14) instead of ~f h
x ;

~f h
y ;

~f h
z .

12. Conclusion

We have presented a variational method of constructing adaptive hexahedral grids. It is based on minimiz-
ing a functional. Adaptation is employed by mesh construction in the Riemannian manifold in R3þm and sub-
sequent projection down to the physical domain in R3. Grid construction is employed by the homeomorphic
piecewise smooth mapping, being the union of the homeomorphic smooth mappings of every cell in the para-
metric domain onto the corresponding cell in the physical domain. The infinite barrier on the boundary of the
set of non-folded grids, composed of dodecahedral cells, prevents grid degeneration during mesh construction.
Corresponding hexahedral grids are also non-folded. A special case of a discontinuous monitor function was
discussed. The use of the control metric allows employment of an additional control for the coordinate sur-
faces when adapting the mesh. The method can be employed in real engineering problems with complicated
geometry of the physical domain. It may be extended to adaptive unstructured meshes in a straightforward
manner.
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